3.6.14 \(\int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx\) [514]

3.6.14.1 Optimal result
3.6.14.2 Mathematica [A] (verified)
3.6.14.3 Rubi [A] (verified)
3.6.14.4 Maple [B] (verified)
3.6.14.5 Fricas [C] (verification not implemented)
3.6.14.6 Sympy [F]
3.6.14.7 Maxima [F]
3.6.14.8 Giac [F]
3.6.14.9 Mupad [F(-1)]

3.6.14.1 Optimal result

Integrand size = 23, antiderivative size = 183 \[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=-\frac {\sec (c+d x) (b-a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d}-\frac {a E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{\left (a^2-b^2\right ) d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}} \]

output
-sec(d*x+c)*(b-a*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2)/(a^2-b^2)/d+a*(sin(1/2 
*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+ 
1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/(a^2-b^2)/ 
d/((a+b*sin(d*x+c))/(a+b))^(1/2)-(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1 
/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b)) 
^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/d/(a+b*sin(d*x+c))^(1/2)
 
3.6.14.2 Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.97 \[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\frac {-a b \sec (c+d x)+a (a+b) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}-\left (a^2-b^2\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}+a^2 \tan (c+d x)-b^2 \tan (c+d x)+a b \sin (c+d x) \tan (c+d x)}{(a-b) (a+b) d \sqrt {a+b \sin (c+d x)}} \]

input
Integrate[Sec[c + d*x]^2/Sqrt[a + b*Sin[c + d*x]],x]
 
output
(-(a*b*Sec[c + d*x]) + a*(a + b)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a 
 + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] - (a^2 - b^2)*EllipticF[(-2*c + 
Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)] + a^2*Tan 
[c + d*x] - b^2*Tan[c + d*x] + a*b*Sin[c + d*x]*Tan[c + d*x])/((a - b)*(a 
+ b)*d*Sqrt[a + b*Sin[c + d*x]])
 
3.6.14.3 Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.08, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 3175, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cos (c+d x)^2 \sqrt {a+b \sin (c+d x)}}dx\)

\(\Big \downarrow \) 3175

\(\displaystyle -\frac {\int \frac {b^2+a \sin (c+d x) b}{2 \sqrt {a+b \sin (c+d x)}}dx}{a^2-b^2}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {b^2+a \sin (c+d x) b}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {b^2+a \sin (c+d x) b}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3231

\(\displaystyle -\frac {a \int \sqrt {a+b \sin (c+d x)}dx-\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a \int \sqrt {a+b \sin (c+d x)}dx-\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3134

\(\displaystyle -\frac {\frac {a \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {a \sqrt {a+b \sin (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3132

\(\displaystyle -\frac {\frac {2 a \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}}dx}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3142

\(\displaystyle -\frac {\frac {2 a \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {2 a \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {\left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}}dx}{\sqrt {a+b \sin (c+d x)}}}{2 \left (a^2-b^2\right )}-\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3140

\(\displaystyle -\frac {\sec (c+d x) \sqrt {a+b \sin (c+d x)} (b-a \sin (c+d x))}{d \left (a^2-b^2\right )}-\frac {\frac {2 a \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}}{2 \left (a^2-b^2\right )}\)

input
Int[Sec[c + d*x]^2/Sqrt[a + b*Sin[c + d*x]],x]
 
output
-((Sec[c + d*x]*(b - a*Sin[c + d*x])*Sqrt[a + b*Sin[c + d*x]])/((a^2 - b^2 
)*d)) - ((2*a*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[ 
c + d*x]])/(d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) - (2*(a^2 - b^2)*Ellipti 
cF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/ 
(d*Sqrt[a + b*Sin[c + d*x]]))/(2*(a^2 - b^2))
 

3.6.14.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3175
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ 
(m + 1)*((b - a*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Simp[1/(g^2* 
(a^2 - b^2)*(p + 1))   Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m* 
(a^2*(p + 2) - b^2*(m + p + 2) + a*b*(m + p + 3)*Sin[e + f*x]), x], x] /; F 
reeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegersQ 
[2*m, 2*p]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 
3.6.14.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(639\) vs. \(2(239)=478\).

Time = 1.22 (sec) , antiderivative size = 640, normalized size of antiderivative = 3.50

method result size
default \(-\frac {\sqrt {b \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+a \left (\cos ^{2}\left (d x +c \right )\right )}\, \left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, F\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b -\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, F\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{3}-\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, E\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3}+\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a +b}+\frac {b}{a +b}}\, \sqrt {-\frac {b \sin \left (d x +c \right )}{a -b}-\frac {b}{a -b}}\, E\left (\sqrt {\frac {b \sin \left (d x +c \right )}{a -b}+\frac {a}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{2}+\left (\cos ^{2}\left (d x +c \right )\right ) a \,b^{2}-\sin \left (d x +c \right ) a^{2} b +\sin \left (d x +c \right ) b^{3}\right )}{b \left (a +b \right ) \sqrt {-\left (a +b \sin \left (d x +c \right )\right ) \left (\sin \left (d x +c \right )-1\right ) \left (1+\sin \left (d x +c \right )\right )}\, \left (a -b \right ) \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d}\) \(640\)

input
int(sec(d*x+c)^2/(a+b*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/b*(b*cos(d*x+c)^2*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*((b/(a-b)*sin(d*x+c) 
+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b 
/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^( 
1/2))*a^2*b-(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b 
))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c) 
+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^3-(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2 
)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)* 
EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3+(b/( 
a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a- 
b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2), 
((a-b)/(a+b))^(1/2))*a*b^2+cos(d*x+c)^2*a*b^2-sin(d*x+c)*a^2*b+sin(d*x+c)* 
b^3)/(a+b)/(-(a+b*sin(d*x+c))*(sin(d*x+c)-1)*(1+sin(d*x+c)))^(1/2)/(a-b)/c 
os(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d
 
3.6.14.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 458, normalized size of antiderivative = 2.50 \[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=-\frac {-3 i \, \sqrt {2} a \sqrt {i \, b} b \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) + 3 i \, \sqrt {2} a \sqrt {-i \, b} b \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) - \sqrt {2} {\left (2 \, a^{2} - 3 \, b^{2}\right )} \sqrt {i \, b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) - \sqrt {2} {\left (2 \, a^{2} - 3 \, b^{2}\right )} \sqrt {-i \, b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) - 6 \, {\left (a b \sin \left (d x + c\right ) - b^{2}\right )} \sqrt {b \sin \left (d x + c\right ) + a}}{6 \, {\left (a^{2} b - b^{3}\right )} d \cos \left (d x + c\right )} \]

input
integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")
 
output
-1/6*(-3*I*sqrt(2)*a*sqrt(I*b)*b*cos(d*x + c)*weierstrassZeta(-4/3*(4*a^2 
- 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4 
*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) 
- 3*I*b*sin(d*x + c) - 2*I*a)/b)) + 3*I*sqrt(2)*a*sqrt(-I*b)*b*cos(d*x + c 
)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b 
^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a* 
b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b)) - sqrt(2 
)*(2*a^2 - 3*b^2)*sqrt(I*b)*cos(d*x + c)*weierstrassPInverse(-4/3*(4*a^2 - 
 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I* 
b*sin(d*x + c) - 2*I*a)/b) - sqrt(2)*(2*a^2 - 3*b^2)*sqrt(-I*b)*cos(d*x + 
c)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b 
^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b) - 6*(a*b*s 
in(d*x + c) - b^2)*sqrt(b*sin(d*x + c) + a))/((a^2*b - b^3)*d*cos(d*x + c) 
)
 
3.6.14.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\int \frac {\sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sin {\left (c + d x \right )}}}\, dx \]

input
integrate(sec(d*x+c)**2/(a+b*sin(d*x+c))**(1/2),x)
 
output
Integral(sec(c + d*x)**2/sqrt(a + b*sin(c + d*x)), x)
 
3.6.14.7 Maxima [F]

\[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{\sqrt {b \sin \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)^2/sqrt(b*sin(d*x + c) + a), x)
 
3.6.14.8 Giac [F]

\[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{\sqrt {b \sin \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^2/(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^2/sqrt(b*sin(d*x + c) + a), x)
 
3.6.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+b\,\sin \left (c+d\,x\right )}} \,d x \]

input
int(1/(cos(c + d*x)^2*(a + b*sin(c + d*x))^(1/2)),x)
 
output
int(1/(cos(c + d*x)^2*(a + b*sin(c + d*x))^(1/2)), x)